If it's not what You are looking for type in the equation solver your own equation and let us solve it.
53-2x^2=21
We move all terms to the left:
53-2x^2-(21)=0
We add all the numbers together, and all the variables
-2x^2+32=0
a = -2; b = 0; c = +32;
Δ = b2-4ac
Δ = 02-4·(-2)·32
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*-2}=\frac{-16}{-4} =+4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*-2}=\frac{16}{-4} =-4 $
| 1x/5+1/3=1 | | 68=r/7+62 | | -14y=0 | | Y=-16t^2+4t+2 | | x+2=20x+20 | | 6n^2-8n+56=0 | | ((7x+6)/7))=((7x-1)/14) | | -8(4-x=4/5(x+14 | | 5/3n=20/9 | | –13n−17n−–16n−–n=13 | | r/2+15=19 | | -1/3+5/e=-3/4 | | a3=-64 | | 7(2x+5x)=3x+78 | | 1/6w-7=0 | | 3x/4=40 | | -.2(x+50)-6=0.4(3x+20) | | 2p+9=-4-(8-5p) | | z3=-4096 | | e2=9 | | Y=2/5z+24/5 | | 12=18+d | | 10y-6+7=9y | | -2n+1.8=3.8 | | 3x+16-5x=2x-4 | | 52/x+3=91/2x-1 | | 5x-(20)-(8.5)=180 | | 4m+4m=2m | | -3x^2+45x=162 | | 10x=4x*4x-6 | | 2x^2-56=-6x | | (-2x+5)=99 |